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Abstract-A two-dimensional mathematical model based on Darcy’s law with Boussinesq approximation 
has been used to study double-diffusive natural convection in a rectangular fluid-saturated vertical porous 
enclosure subject to opposing and horizontal gradients of heat and solute. Results are presented for 
50 Q R, d 250,O.Of < N < 10, 10 4 Le < 40 and 1 < A < IO, where &, N, Le and A correspond to the 
solutal Rayleigh-Darcy number, inverse of buoyancy ratio, Lewis number and enclosure aspect ratio, 
respectively. The nume~cal integration of the full problem reveals that for su~ci~n~y large R,, Le and A, 
there is a domain of N in which one obtains oscillating convection. Outside this domain, the solution 
approaches steady-state convection, for which analytical solutions are developed and presented. The 

agreement between the analytical and the numerical solutions is shown to be satisfactory. 

1. INTRODUCTION 

NATURAL convection due to spatial variations of fluid 
density is of fundamental importance in many natural 
and industrial problems. The variation of fluid density 
can be due to non~ifo~ distribution of temperature 
and/or solute concentration. Some examples of heat 
and/or solute transfer by natural convection can be 
found in : oceanography, geophysics, astrophysics, 
metallurgy and electrochemistry. Most of the reported 
surveys on natural convection deal with cases in which 
the buoyancy forces are due to the variations of only 
temperature or concentration. The interest of research 
in the case of flow due to variations of both tem- 
perature and concentration has surged during recent 
years. Such phenomena are usually referred to as ther- 
mohaline, double diffusive or combined heat and mass 
transfer natural convection. Since heat and solute 
diffuse at widely different rates, double diffusive 
phenomena often exhibit special Features, such as 
fingering and layering, that lack counterparts in 
single-component cases, see refs. [l-3). 

In the present paper we report a theoretical study 
of double diffusive natural convection in a fluid-satu- 
rated rectangular porous enclosure. Fluid motion is 
caused by buoyancy forces which, in turn, stem from 
constant and opposing gradients of temperature and 
concentration of a dissolved substance prescribed on 
the vertical walls of the enclosure. Of primary rel- 
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evance to the present work is the paper by Trevisan 
and Bejan [4] in which the authors reported numerical 
and analytical results for a fluid-saturated rectangular 
porous enclosure subject to constant gradients of tem- 
perature and concentration at the vertical walls. Based 
on the results of an earlier work by Bejan [Sf, the 
authors developed an analytical boundary layer solu- 
tion to the problem, which proved to be vahd only for 
the case of Le = 1. Instead, for Le > I, an analytical 
similarity solution was presented in the heat-driven 
limit. In a recent paper, Alavyoon [6] further 
developed the solution given in the first part of ref. [4] 
to account for the case of Le > 1 in a porous cavity 
with natural convection due to cooperative buoyancy 
forces. The present paper reports the results obtained 
through an extension to opposing buoyancy forces of 
the analytical model given in ref. 161. In addition, 
the phenomenon of oscillating ~onv~tion, which is 
observed for certain parameter ranges, is discussed. 
The occurrence of oscillating convection in porous 
media, both for single-component and for double- 
diffusive cases, has been previously observed and 
reported by several authors, see e.g. refs. [7-111. In 
these papers, the authors consider natural convection 
in horizontally placed rectangular porous enclosures 
subject to vertical gradients of heat or/and solute. To 
the best of our knowledge, oscillating convection in 
vertical porous layers subject to horizontal gradients 
of heat and solute have not been reported prior to the 
present work. 

For an overview of previous work on double diffus- 
ive naturai convection in porous media see refs. [l, 121. 
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aspect ratio 
buoyancy ratio. /IA“‘/xA”) 

solute diffusivity 
acceleration of gravity 
enclosure width 
enclosure height 
permeability 
Lewis number 
inverse of buoyancy ratio, 1 /hr 
Nusselt number 
pressure 
RayleighhDarcy number 

vertical gradient 
Sherwood number 
time 
velocity vector, (u, r) 
horizontal coordinate 
vertical coordinate. 

NOMENCLATURE 

2. PROBLEM STATEMENT 

Consider a two-dimensional vertical enclosure filled 
with a homogeneous fluid-saturated porous medium 
of height 2H and width 2h. The fluid is initially uni- 
form and at rest. The top and the bottom walls of the 
enclosure are insulated. Constant and opposing fluxes 
of heat and solute are prescribed on the vertical walls. 
In the present analysis, the conservation of momen- 
tum, volume, solute concentration and heat is mod- 
elled by the following system of dimensionless equa- 
tions [6] 

u = -VP- R,(O- N$)e, (1) 

v*u=o (2) 

where 

and 

The boundary and initial conditions arc 

(3) 

(4) 

Greek symbols 

; 

coefficient of thermal expansion 

coefficient of concentration expansion 
c porosity 
0 nondimensional concentration variation 
3 horizontal profile 
li thermal diffusivity 
A horizontal gradient prescribed on the side 

Will1 

kinematic viscosity 
density 
heat capacity ralio 
nondimensional temperature variation. 

Subscripts and superscripts 
C solutal 
T thermal 
0 initial. 

20 aql 
~ 1, --z 

(7.Y - - ?X 
- 1 and II = 0 at 1.~1 = I (6) 

H(x,~,O)=O, ~(x.y,O)=Oandu(x.y,O)=O (7) 

where A = H//I, see Fig. 1. 
The boundary condition (6) corresponds to influx 

of heat and solute at x = - 1 and the opposite at 
.Y = 1. 

3. NUMERICAL METHOD 

The time-dependent evolution of the velocity, con- 
centration and temperature fields is numerically com- 

+A 

t 
ii 

Y 

-1 -L X +l 

an 34 ~- = 0 and II = 0 at ]JI( = A (5) 
-A 

?y - iiy FIG. 1. The geometry of the porous enclosure 
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puted by using finite differences. The equations and 
boundary conditions are discretized on a rectangular 
mesh with uniform spacing in each coordinate direc- 
tion. The pressure gradient term in equation (1) is 
eliminated by using its stream function version. The 
convective terms in equations (3) and (4) are evalu- 
ated at the last time step for which the solution is 
known. The resulting numerical scheme is first-order 
accurate in time and second-order accurate in space. 
The discretized equations and boundary conditions 
define three linear systems of algebraic equations that 
are solved at each time step by the method of con- 
jugate gradients in order to determine the values of 
stream function, concentration and temperature at 
each grid point. For more details see ref. [6]. 

4. ANALYTICAL SOLUTION FOR THE STEADY 

STATE 

4.1. General 
If the enclosure is sufficiently high for end effects to 

be negligible except for in the vicinity of the horizontal 
boundaries, one can assume that the steady-state solu- 
tion outside the end regions has the following form 

@I 

1. Conservation of volume : 

s 

+I 
v(x) dx = 0 

-1 

2. Conservation of total mass : 

197 

(17) 

+A +I 

J J J 
+1 

&edxdy=2AE 
-A -I 

_, 9,(x)dx=O (18) 

3. Conservation of total enthalpy : 

+A +I 

J J J 

+I 

o+dxdy=2Ao 
--A -1 

~, %(x)dx=O (19) 

4. Balance between convective and diffusive trans- 
ports of solute at arbitrary horizontal cross-section : 

J 

fl 

J 

+1 
cue-ve) se, dx = v9, dx-2S, = 0 (20) 

-I -1 

5. Balance between convective and diffusive trans- 
ports of enthalpy at arbitrary horizontal cross-sec- 
tion : 

J 

+1 

(u$-LeV4)*e, dx = 
J 

+‘u9, dx-2LeSr = 0. _, 

PI 

(21) 

u = v(x)e, 
(8) 

The mathematical problem defined by equations 
(12)-(14) and the boundary and integral conditions 

e = ~,~+9,(~) (9) (15)-(21) is a well-posed problem which can be solved 

4 = STY+&(x) (IO) 
rather easily. Below follows the solving procedure and 
the different possible solutions to this problem. 

VP = {n, -%(X -N&Me, (11) 

where S,, Sr and lIY are unknown constants, and 
v(x), 9,(x) and Qr(x) are unknown functions to be 4.2. Solution procedure 

determined. The temperature profile 9, can be given in terms of 

Introducing relationships (8Hll) into equations (1) 
the concentration profile 9, by combining equations 

(3) and (4) and boundary condition (6) one obtains 
(13) and (14) which gives 

a linear system of second-order ordinary differential d29, Sr d29, __- 
equations dx2 - LeS, dx2 

v(x) = -rI,-R,9,(x)+R,LW,(x) (12) and thereafter integrating twice, and invoking the 

v(x)S, = 2 

boundary conditions (15) and (16) and the integral 

(13) conditions (18) and (19) which yields 

d29, 
v(x)& = Le- 

dx2 (14) 
3,=&9,+ $- ( > 1 x. (22) 

c c 

Y-5 
dx 

---I atx=+l 
The velocity profile u(x) can be expressed in terms of 

(15) 9, by substituting (22) into (12) 

(16) v(x) = -l-I,+& 

which define the mathematical problem to be solved 
for determining v(x), 9,(x) and Qr(x) in terms of 
the yet unknown constants S,, Sr and II, and two 

+R, (s +)x. (23) 

integration constants. In order to determine these five The value of the constant II, can be determined by 

unknowns, five integral conditions have to be imposed applying the integral conditions (17) and (18) to for- 

on the solution. These conditions read [6] mula (23) from which one obtains l-I,, = 0. Finally, 
the second-order linear ordinary differential equation 



drjm -(R& - R,S,)9, = (RTS7 -NRC&).x (24) 

where R,. = R,(NiLe), can be obtained for 9, by 
inserting (23) into equation (13) and rearranging the 
terms. For convenience. we introduce the notations 

n = J(R& - R,S,) 

and 

R,SI - NR,S, B= ~~~~~ ~~~~ 
R,& - R,S, 

2‘4 
,Vu = ~~ 

1 

-I 

in (30) 

2 ,I 
l($),~m / -t4,,- r 1; d?, 

which in view of (9), (IO), (22) and (25) reduce to 

A complication which arises here compared to the 

case of cooperating fluxes of heat and solute [6] is that 
the parameter (1, depending on the values of R,, N 
and LP, can become real, imaginary or zero. The 

solutions for these three cases are given in the next 

subsections. 
4.2.1. RTST-RcSc > 0 (Q red). Assume that the 

values of the input parameters R,, Le and N, are such 
that the final results satisfy the condition 
R,S,-R,S, > 0, i.e. R is real. In terms of the yet 
unknown constants S,. S,, Q and B, the solution to 

the equation (24) reads 

4.2.2. R7 S, - R,S, < 0 (Q imqinary). Assume that 
the values of the input parameters are such that R 
becomes imaginary. We can still use the solution given 
in the previous subsection by simply replacing R with 
iw, where i = J( - 1) and cu = ,,‘(R,S,- RTST) (real). 
One thus obtains 

B-l 
9,.(x) = ~- ~~ sinh (Qx) - Bx. 

Qcosh (Q) 
(25) 

The expression for 9, is given by (22) and the velocity 
profile can be computed by substituting (26) into 
equation (13) 

It remains to determine the values of SC and S,, 
Substituting (22), (25) and (26) into the integral con- 
ditions (20) and (21) gives the nonlinear and coupled 
system of algebraic equations 

+B(B-,)(,-~++O (27) 

from which SC and S,- can be determined for given 
values of R,, N and Le. For the general case, equations 
(27) and (28) have to be solved numerically, e.g. by 
Newton-Raphson’s method. However, this is a much 
easier task than numerically solving the full set of 
equations given in (l)-(7). 

Extensive numerical calculations show that in some 
cases, for given values of R,, Le and N, the equation 
system (35) and (36) may have more than one 
solution. Only the solution that fulfils the conditions 
S,- NS, < 0 and 01 < 7t can agree with the fully 
numerical computations. Note that the first of the 
aforementioned conditions requires that the average 
density of the fluid across every horizontal cross sec- 

tion shouId decrease upwards. 
The Sherwood number can be computed from 

S/l = B-(B-,)tan$? I’ (37) Once SC and S,, and thereby B and R, are known, 
the values of the overall Sherwood and Nusselt num- 
bers can be computed from and the Nusselt number from expression (32). 

for the velocity profile and 

B-i 
:ir,(s) = ~~~ 

(0 COS (UJ) 
sin (RIX) - Bs (34) 

for the concentration profile. The temperature profile 
9, is given by (22). The values of SC and S, can 
be determined by numerically solving the following 

equations 

+B(B-l)(,-ta:j+O (35) 
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An important matter which now remains to be 
resolved is the question of how, for given values of 
&,, Le and N, one can anticipate whether or not s1 
becomes imaginary. In order to answer this question, 
one has first to find out for what values of the input 
parameters, Sz becomes zero. This matter is considered 
in the next subsection. The domain of validity of the 
analytical solutions will be discussed more in Section 
5. 

4.2.3. R&-R& = 0 (0 = 0). In this subsection 
it is assumed that R, and Le are known, and N is 
determined so that fi becomes zero. If Q = 0 then, in 
view of the definition of 51, Sr can be given in terms 
of SC by the relationship 

s, = $sc, 
The solution to (24) then reads 

I-N 
%(x) = - (39) 

Substitute (39) into (13) to obtain the velocity profile 

v(x) = (1 -N)R,x. (40) 

In view of (38), expression (22) for the temperature 
field reduces to 

QT(X) = US,+ f - 1 x. ( > (41) 

Next, substituting (39) and (40) into the integral con- 
dition (20) gives SC, and thereby according to (38) 
also S,, in terms of N 

(42) 

Finally, substituting (38)-(42) into the integral con- 
dition (21) yields the equation 

&(N-1)3R;+N-LeZ = 0 (43) 

which has to be satisfied in order to get a solution for 
which R = 0. Equation (43) is a third degree poly- 
nomial in N which has only one real root. For given 
values of R, and Le, equation (43) can be easily solved 
by, e.g., graphic or numerical methods. However, for 
Le > 2 and R, > 10, which are not so inconveniently 
restrictive conditions, the only real root of equation 
(43) can be accurately estimated by the expression 

5. RESULTS AND DISCUSSION 

A large number of numerical computations have 
been carried out to investigate the time-dependent 
and the steady-state behaviors of the system under 

the numerically computed values of Sh and Nu vs R, 

(10 ,< R, ,< lOOO), for Le = 25, N = 5 and A = 20, 
vs Le (1.5 < Le < lo), for R, = 250, N = 0.5 and 
A=20,andvsA(l~A-$5),forR,=1000,Le=l0 
and N = 2, have already been reported in ref. [ 131. 
In the present analysis, emphasis is put on how the 
solution evolves when N is continuously varied. With 
the main goals of validating the analytical solutions, 
delineating their domains of validity and reporting the 
possibility of occurrence of unsteady oscillating 
convection, a representative set of the results are 
selected and shown in Figs. 2-14 and in Table 1. Since 
the aspect ratio of the cavity proves to play a crucial 
role in the qualitative and the quantitative features of 
the solution, first the case of high aspect ratios 
(A > 2.5 in this paper) and then the case of moderate 
values of the aspect ratio (1 < A < 2.5 in this paper) 
will be discussed. 

5.1. The case of high aspect ratios (A > 2.5) 
The numerical computations show that for 

sufficiently large values of R, and Le, there exists a 
lower (iv,,,) and an upper (N,,,,,) limit for N such that 
for N < Nm,n or N > N,,,, the solution goes towards 
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1.0 
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b 
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FIG. 2. R, = 100, Le = 10, N= 1 and A = 5, (a) Nusselt . ,. ^. number vs time, and (b) Sherwood number vs time. consideration. The variations of the analytically and 
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Table 1. Parameter ranges for which oscillating convection 
occurs 

.!A, 

10 
20 
30 
40 

IO 
20 
30 
40 

10 
20 
30 
40 

10 
20 
30 
40 

‘~“,,,I 

R,= IOOandA = 10 
0.60 
0.55 
0.55 
0.55 

R,= IOOandA =5 
0.60 
0.60 
0.55 
0.55 

R,=lOOandA=3 
0.60 
0.55 
0.55 
0.50 

R, = 250 and A = 5 
0.60 
0.50 
0.50 
0.50 

0.90 
0.85 
0.80 
0.80 

0.80 
0.75 
0.75 
0.70 

0.60 
0.65 
0.65 
0.65 

1.20 
1.20 
I .o 
1.0 

steady state while for N,,,, < N < N,,,,, the solution 
evolves towards a permanently oscillating state of 
convection, see Figs. 2 and 3. N,,,,, and N,,,,, are deter- 
mined numerically, with an error of IAN 1 z 0.05, for 
various values of the input parameters R,, Le and A 

and given in Table 1. Note that for N = 1 

0=4=--I and u=O 

is an exact solution to the equations (l)-(4) subject 
to the boundary conditions (5) and (6). According to 
this solution Sh = NM = 1, which means that heat 
and mass transfer is in the purely diffusive regime. 
However, Fig. 2 shows that the numerical integration 
of the full system of equations leads to a different 
solution in which convection plays a dominant role in 
the transfer of heat and mass. The oscillating motion, 
which is a consequence of the double-diffusive feature 
of the present problem. is observed in cases where 
the contribution of the gradients of temperature and 
solute concentration to buoyancy are of comparable 
magnitude. Streamlines and contours of concen- 
tration, temperature and density during a cycle arc 
given in Figs. 47. Generally speaking, one can dis- 
tinguish two categories of streamlines in Fig. 4: (A) 
those nearest to the solid boundaries and covering the 
whole height of the enclosure (Figs. 4(a))(j)). and (B) 
those in the upper and lower halfs of the core region, 
covering at most half of the enclosure height (Figs. 
4(c))(e)). The streamlines of category A are present 
in the flow field all the time while those of category B 
appear and disappear periodically. Note that the fluid 
motion on all of these streamlines is in the clockwise 
direction. According to Fig. 4, following a decrease in 
the magnitude of velocity, Figs. 4(a) and (b), the 

unicellular pattern of streamlines (consisting ol 
streamlines of category A) tends to develop into a 
bicellular pattern, Figs. 4(c))(e). This development 
starts when two convective cells (streamlines of catc- 
gory B) appear in the upper and lower core regions. 
The motion of these two convective cells reduces the 
vertical stratification of the density field (Figs. 7(c)- 
(e)), and as a result weakens the blocking effect of 

stratification on the vertical motion of the fluid. thus 
allowing the convective cells to extend their vertical 
span towards the middle of the enclosure. In Figs. 

4(c) (e). the horizontal motion of the fluid near the 
middle of the enclosure in the lower (upper) part 01 
the upper (lower) convecdvc cells is from right to left 
(left to right). Therefore. upon reaching the middle ot 
the cnclosurc, the upper and lower convective cells m 

Figs. 4(c) -(c) gradually merge, set Figs. 4(c) and (f). 
and the horizontal motion near the half-height of the 
enclosure disappears, filling the whole enclosure with 
the streamlines of category A. Thereafter, the density 
field becomes progressively more stratihcd, Figs. 7(f )- 
(j) and 7(a), (b). the flow velocity diminishes, and the 
cycle is repeated. Note that according to Fig. 5, the 
concentration field (the component with low diffu- 
sivity) goes through dramatic changes during a period 

a 

25.0 37.5 t 50.0 

17.0 

Sh 

i3.0 

9.0 

5.0 

15.0 37.5 
t 

50.0 

FIG. 3. R, = 100. Le = 20, N = 0.6 and A = 5, (a) Nusselt 
number vs time, and (b) Sherwood number vs time. 
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c i j d e f g h a b 

FIG. 4. Contour lines of stream function $ during a period of oscillations. R, = 100, Le = 20, N = 0.6, 
A = 5.0, A$ = 2.0, $ increasing from the boundaries inwards (clockwise flow direction). (a) t = 36.344, 
0.0 < $ < 15.0, (b) t = 36.431, 0.0 < $ < 13.0, (c) t = 36.518, 0.0 < + $ 13.0, (d) t = 36.605, 
0.0 <r/j < 15.0, (e) t = 36.692, 0.0 < $ < 19.0, (f) t = 36.779, 0.0 < $ < 21.0, (g) t = 36.886, 
0.0 < $ < 25.0, (h) t = 36.953, 0.0 < IJ Q 27.0, (i) t = 37.040, 0.0 < $ < 27.0 and (j) t = 37.127, 

0.0 < $ < 21.0. 

a b c d e f g h i j 

FIG. 5. Contour lines of concentration f? during a period of oscillations. R, = 100, Le = 20, N = 0.6, 
A = 5.0, A0 = 0.1, 0 increasing upwards. (a) I = 36.344, -0.6 < 0 < 0.6, (b) t = 36.431, -0.7 < 0 < 0.7, 
(c) t = 36.518, -0.8 d tI < 0.8, (d) t = 36.605, -0.9 < B Q 0.9, (e) t = 36.692, - 1.0 < 0 4 1.0, (f) 
t = 36.779, - 1.0 < fl < 1.0, (g) t = 36.886, - 1.0 G 0 < 1.0, (h) t = 36.953, -0.9 < 0 < 0.9, (i) t = 37.040, 

-0.7 < 0 < 0.7 and (j) t = 37.127, -0.7 < 8 < 0.7. 

a b c d e f g h i j 

FIG. 6. Contour lines of temperature 4 during a period of oscillations. R, = 100, Le = 20, N = 0.6, A = 5.0, 
AqS = 0.25, 4 increasing upwards. (a) t = 36.344, -2.5 G 4 < 2.5, (b) t = 36.431, -2.5 G 4 S 2.5, (c) 
t = 36.518, -2.5 Q 4 G 2.5, (d) t = 36.605, -2.2 G I$ d 2.5, (e) t = 36.692, -2.25 < 4 < 2.25, (f) 
t = 36.779, -2.25 4 4 < 2.25, (g) t = 36.886, -2.5 C 4 d 2.5, (h) t = 36.953, -2.5 < 4 < 2.5, (i) 

t = 37.040, -2.5 Q qS < 2.5 and(j) t = 37.127, -2.75 < 4 < 2.75. 
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a b d e f 6 h I J 
FIG. 7. Contour lines of density {I = U-- Nb, during a period of oscillations. R, = 100, Lc = 20, ,t = 0.6. 
A = 5.0, Ap = 0.1, increasing downwards. (a) I p = 36.344, - I. I < 6 1. I. (b) I p = 36.431. 
-0.9 < p < 0.9. (c) t = 36.518. -0.8 <p 4 0.8, (d) t = 36.605. -0.7 < < 0.7, (e) / ,I -~= 36.692. 
-0.7 <p 6 0.7. (f) I = 36.779, -0.7 < < 0.7, (g) ,’ I = 36.886, -0.X < < 0.8, (h) I p = 36.953, 

- I .O < p < I .O, (i) I = 37.040. I. I <p< I.1 - and(i) / -17.127. -l.%p< 1.2. 

of oscillation. The temperature field (the component 
with high diffusivity) on the other hand, is only weakly 
distorted. In view of the changes that the density field 
goes through in Fig. 7, one may infer that the desta- 
bilizing influence of horizontal density gradients on 

FIG. 8. Comparison between the fully numerical (thin line) 
and the analytical (iw) solutions (thick line) for R, = 100. 
Le = 10. N = 1.1, A = 6 and x = 0, (a) concentration 

profile, and (b) temperature profile. 

the flow field is responsible for the occurrence of oscil- 

lating convection. For larger values of iv (IV > IV,,,,,). 
this destabilizing influence is subdued by the sta- 
bilizing influence of the vertical stratification of den- 

sity and the oscillations are damped progressivelq 
until a steady state of convection is established. Fat 
the time-dependent development of the contour l.ines 
of the cases which lead to steady state see ref. [ 131. 

The fully numerical solution and the analytical solu- 
tion of subsection 4.2.2 (hereafter referred to as the itu- 
solution) are compared in Figs. 8 and 9 for R, = 100. 

Le = 10. N = 1 .l and A = 6. These values are such 
that the analytical solution given in subsection 4.2.1. 
(hereafter referred to as the Q-solution) is nonexistent 
since the solution to equations (27) and (28) leads to 
an imaginary value for C2. The agreement between the 
two solutions is good except for in the end regions at 
the top and the bottom of the cavity, see Fig. 8. This 
is to be expected since the analytical solution is valid 
only outside these end regions. Note that the solutal 
end regions in Fig. 8(a). despite the lower diffusivity 
of solute compared to that of heat, are thicker than 
their thermal counterparts in Fig. 8(b). This con- 
clusion is in agreement with the results of ref. [6] while 
at variance with those of ref. [4]. Note also that in 
spite of the rather large value of R,, the horizontal 
profiles of concentration, temperature and velocity in 
Fig. 9 are not of boundary layer type, and therefore 
an approximate mathematical analysis based on 
boundary layer assumption cannot possibly disclose 
these profiles. It should be remarked that while the 0 
solution can have boundary layer character fol 
sufficiently large R,, see ref. [6], the iw-solution cannot 
be of boundary layer type regardless of the value 
of R,. 

The variations of the numerically computed Sher- 

wood and Nusselt numbers vs N. and comparisons 
with the analytical solutions, are illustrated in Fig. 10. 
Extensive numerical investigations of the solutions to 
equations (27) and (28) and equations (35) and (36) 
show that for given values of R, and Le, there exists 
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FIG. 9. Comparison between the fully numerical (+) and the 
analytical (io) solutions ( -) for R, = 100, Le = 10, 
N = 1.1, A = 6 and y = 0, (a) concentration profile, (b) 

temperature profile, and (c) velocity profile. 

a domain N,(R,, Le) < N < 1 where one can obtain 
two physically plausible (i.e. S, - NS, < 0) analytical 
solutions: one R-solution and one iw-solution. The 
value of N, proves to be such that for N = N,, o 
becomes approximately equal to 7t. For N > 1 the 
analytical solution is unique and represented by the 
iw-solution if 

and by the solution in subsection 4.2.3 if 

and by the Q-solution if 

In Fig. 10(a), for clarity, only the Q-solution is plotted 
for N < 1. In Fig. 10(b), the io-solution is given in its 
whole domain of validity together with the Q-solution 
where it exists. Fig. 10(a) shows that the analytical 
and the numerical solutions agree well. From Fig. 
10(b) one can conclude that for N < N,,,i, the steady- 
state numerical solution agrees with the Q-solution 

while for 

it agrees with the iw-solution. This conclusion is valid 
for the high aspect ratio cases, and will be slightly 
modified in the next subsection. According to Fig. 
10(b), a substantial part of the domain N,(R,, 
Le) < N < 1 is covered by the oscillating solution. 

5.2. The influence of aspect ratio-the case of inter- 
mediate aspect ratios (1 ,< A < 2.5) 

The oscillating solutions discussed in the previous 
subsection are high aspect ratio phenomena that do 

not occur for low and intermediate values of the aspect 
ratio. In other words, for sufficiently large R, and Le, 
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FIG. 10. Comparison between the fully numerically and the 
analytically computed Sherwood and Nusselt numbers. 
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there exists a minimum Amin (Ami, = 2-3 in this paper) 
such that for A > Amin one obtains an oscillating solu- 
tion if N is in a certain interval (N,,,i, < N < N,,,,,) 
while for A < Amin the solution tends to steady state 
for all values of N. This observation is demonstrated 
in Fig. 11, according to which, for R, = 50, N = 0.8 
and Le = 10, one obtains an oscillating solution if 
A = 4, whereas decreasing the aspect ratio to A = 2 
yields a solution that fast approaches steady state. 

The properties of the solution, and the influence of 
A on it, for values of N that are near to Nmi, prove to 
be interesting. For the cases shown in Figs. 12-14 one 
can numerically obtain N,,,,, x 0.65 if the aspect ratio 
is sufficiently large (A,i, - 3). Figure 12 shows the 
numerically and the analytically determined velocity 
profiles in the cases of N = 0.6 (<N,,,) and N = 0.7 
(> N,,) for A = 2. These parameter values yield two 
analytical solutions both of which are plotted in Figs. 
12(a) and (b). Figure 12(a) shows that for N = 0.6, 
(i) the numerical solution agrees with the Q-solution, 
and (ii) the fluid flow direction is counter-clockwise, 
suggesting that, though of comparable orders of mag- 
nitude, the horizontal solutal gradients finally over- 
come their thermal counterparts. Figure 12(b) on the 
other hand shows that for N = 0.7, which is only 
slightly larger than 0.6, (i) the numerical solution 
agrees with the io-solution, and (ii) the fluid flow 
direction is clockwise, indicating that, though still of 
comparable orders of magnitude, the horizontal ther- 
mal gradients overcome their solutal counterparts at 
last. In the present analysis, the profile of velocity at 
a horizontal cross-section outside the end regions has 
the same form as the profile of density at that cross- 
section, i.e. v N 9,- N9,. Interpreting the velocity 
profiles shown in Figs. 12(a) and (b) as density 
profiles, one may conclude that the horizontal gradi- 
ent of density in the bulk of the enclosure as predicted 
by the io-solution is much larger than that predicted 
by the Q-solution. The idea discussed earlier that oscil- 
lating convection is caused by the destablizing effects 
of the horizontal gradients of density can now be lent 
further support in Figs. 13(a) and (b), according to 
which increasing the aspect ratio to 4, and keeping the 
other parameter values the same as in Fig. 12, leads 
to a steady state solution for N = 0.6 while it yields 
an oscillating solution for N = 0.7. In Fig. 14, the 
numerical and analytical solutions are compared in 
the interval for which the iw- and Q-solutions exist 
simultaneously. The main conclusions that can be 
drawn from Fig. 14 are that (i) for a value of N 
which is slightly less than N,,,,,, transition occurs 
from counter-clockwise flow, with unstable thermal 
stratification (corresponding to the !&solution), to 
clockwise flow, with stable thermal stratification 
(corresponding to the io-solution), (ii) the 
aforementioned transition occurs earlier for the lower 
aspect ratio, and (iii) the oscillating solution is con- 
tained in the range of N for which the iw-solution is 
valid for sufficiently small A. 

Our investigation of the transition from unstable to 
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FIG. 14. Comparison between the fully numerically and the 
analytically computed Sherwood and Nusselt numbers. 

stable thermal stratification and the properties of the 
oscillating solution reported in this paper has not been 
exhaustive. Further comprehensive numerical and 
analytical, not to mention experimental, work remains 
to be done in order to explain and gain deeper insight 
into these phenomena. 
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